Investigations on electrochemical performance of La2NiO4+δ cathode material doped at A site for solid oxide fuel cells
نویسندگان
چکیده
منابع مشابه
La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for Intermediate Temperature Solid Oxide Fuel Cells: A comparative study
In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....
متن کاملThe Effect of cathode Porosity on Solid Oxide Fuel Cell Performance
In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type of gr...
متن کاملEvaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell
A cobalt-based thermoelectric compound Ca(3)Co(2)O(6) (CCO) has been developed as new cathode material with superior performance for intermediate-temperature (IT) solid-oxide fuel cell (SOFC). Systematic evaluation has been carried out. Measurement of thermal expansion coefficient (TEC), thermal-stress (σ) and interfacial shearing stress (τ) with the electrolyte show that CCO matches well with ...
متن کاملThe Effect of cathode Porosity on Solid Oxide Fuel Cell Performance
In the present study, the effect of porosity on the cathode microstructure (50:50 wt. % LSM: YSZ) of a Solid Oxide Fuel Cell (SOFC) has been examined. A 3-D finite element method for Mixed Ionic and Electronic Conducting Cathodes (MIEC) is presented to study the effects of porosity on cell performance. Each microstructure was realized using the Monte Carlo approach with the isotropic type o...
متن کاملElectrochemical Investigations of Cobalt-Doped LiMn2O4 as Cathode Material for Lithium-Ion Batteries
A wide range (y = 0.05—0.33) of Co-doped LiCo5Mn2_504 spinels were synthesized and electrochemically characterized. These Co-doped spinels showed improved specific capacity and capacity retention over pure spinels. Electrochemical impedance spectroscopy and the linear polarization resistance technique were used to determine the transport and electrochemical kinetic parameters of Co-doped spinel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Research Express
سال: 2020
ISSN: 2053-1591
DOI: 10.1088/2053-1591/ab9c60